Femtosecond Laser Filamentation for Atmospheric Sensing
نویسندگان
چکیده
Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.
منابع مشابه
Filamentational instability of partially coherent femtosecond optical pulses in air.
The filamentational instability of spatially broadband femtosecond optical pulses in air is investigated by means of a kinetic wave equation for spatially incoherent photons. An explicit expression for the spatial amplification rate is derived and analyzed. It is found that the spatial spectral broadening of the pulse can lead to stabilization of the filamentation instability. Thus optical smoo...
متن کاملExtending filamentation
Femtosecond filamentation is an appealing self-organization phenomenon in optical physics that has been awaiting practical applications for a long time. First described some 20 years ago1, the collapse of the spatial beam profile of a femtosecond laser beam may lead to the formation of metre-long plasma channels in atmospheric air. These plasma channels resemble those generated by electric disc...
متن کاملFilamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source
All matters in the path of filaments induced by an intense femtosecond laser pulse propagating in air could be fragmented and result in the emission of characteristic fluorescence spectra from the excited fragments. The fluorescence spectra exhibit specific signatures (fingerprints) that can be used for the identification of various substances including chemical and biological species. In this ...
متن کاملPhysics and applications of atmospheric nonlinear optics and filamentation.
We review the properties and applications of ultrashort laser pulses in the atmosphere, with a particular focus on filamentation. Filamentation is a non-linear propagation regime specific of ultrashort and ultraintense laser pulses in the atmosphere. Typical applications include remote sensing of atmospheric gases and aerosols, lightning control, laser-induced spectroscopy, coherent anti-stokes...
متن کاملQuasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence
A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the re...
متن کامل